

Thierry ZOLLER

Principal Security Consultant

contact@g-sec.lu

http://www.g-sec.lu

G-SEC™ is a vendor independent Luxemburgish led

security consulting group that offers IT Security

consulting services on an organizational and

technical level. Our work has been featured in New

York Times, eWeek, ct', SAT1, Washington Post and

at conferences ranging from Hack.lu to Cansecwest.

Request for comments

- DRAFT

Strong SSL Configuration & Compatibility Report 2009

2

Table of Contents
Executive Summary ... 3

Revisions .. 3

SSL/TLS .. 4

SSL/TLS Protocol versions .. 4

Protocol Key exchange .. 6

Authentication ... 7

Encryption ... 8

Minimum industry Encryption and Key length recommendations ... 9

G-SEC recommendations and best practices .. 10

TLS / SSL Browser Compatibility overview .. 11

Browser protocol support (Default) .. 11

Browser Key exchange algorithms support ... 11

RSA... 12

ECC ... 13

TLS / SSL Server Compatibility overview ... 14

RSA... 15

G-SEC recommended E-banking SSL settings .. 16

Apache & IIS7/ IIS7.5 recommended SSL configuration ... 16

IIS6 recommended SSL configuration ... 16

Summary ... 17

Minimum SSL configuration for E-banking .. 17

Recommended SSL configuration for E-banking ... 17

Sources .. 18

Thanks ... 18

Disclaimer .. 18

Copyright ... 18

Appendix.. 19

Enumerate Crypto api ... 19

Strong SSL Configuration & Compatibility Report 2009

3

Executive Summary

This report gives general recommendations as to how to configure SSL/TLS in order to provide

state of the art authentication and encryption support. The options offered by SSL engines grew

from the early days since Netscape developed SSL2.0 to the introduction of TLS. Furthermore

servers and clients offer a different set of available options and finding the middle ground has

proven difficult.

We will also explain the various vulnerabilities present in SSL/TLS, how to mitigate them and

provide guidance as to support a wide variety of Browsers and still offer state of the art security.

For this purpose this paper comes with a toolset which consists of:

 SSL Harden (beta) – Allows users of Windows 2000, XP, Vista, 7 and particularly

administrators of Windows Server 2003 & 2008 to configure SSL/TLS support.

Administrators can manually edit and backup the SSL configuration and set PCI-DSS

compliant SSL rules with a click of a button. To ease administration SSL Harden allows to

read and write the settings remotely via RPC/SMB.

 SSL Audit (alpha) - is a remote SSL audit tool able scan for SSL/TLS support against

remote servers; it does so by using its own small parsing engine and does not rely on

OpenSSL or other engines.

The paper has been written with e-banking applications in mind and solely comments about the

underlying SSL/TLS security protocol; no other security mechanism such as (TAN, mTAN, iTAN,

OTP..) or other mechanisms have been taken into account.

The information is believed to be correct at the time of writing, if you believe the information

displayed within this paper is wrong please contact contact@g-sec.lu

Revisions

Version Date Annotations Author

0.8 07.12.2009 Initial draft Thierry ZOLLER

0.85 09.12.2009 Added recommendations,
Added BSI, NIST, FSIA
recommendations

Thierry ZOLLER

0.9 09.12.2009 Added Browser support
Added Server support

Thierry ZOLLER

0.95 18.12.2009 Executive summary Thierry ZOLLER

Strong SSL Configuration & Compatibility Report 2009

4

SSL/TLS
In order to securely transport data from one endpoint to another SSL and TLS protocols are used

as they provide data confidentiality and data integrity. TLS was designed to offer a flexible and

secure protocol that is able to interoperate with any service or application, furthermore TLS

provides cryptographic support that SSL could not offer.

SSL/TLS Protocol versions

SSLv2

SSL version 2 was developed by Netscape in 1996 and is 13 years old; it is vulnerable to
various attacks and should not be supported. Several E-banking sites do although internet
browsers like Internet Explorer 7 (2006), Firefox 2 (2005) and Opera 9 (2006) do no longer
support SSLv2.

Users should not be encouraged to use older browsers as they suffer from other
vulnerabilities that put them and their banking information at risk. Should another
requirement such as third party code require SSLv2 for an e-banking platform it needs to be
upgraded to TLS, as it is vulnerable to several known attacks.

Should you absolutely need to conform to foreign regulations (china and others) we
recommend relocating these customers to a separated banking server/system. They pose a
risk for other e-banking users. (SSLv2 does not support perfect forward secrecy)

The SSLv2 protocol suffers from

 Re-usage of key material (message authentication and encryption) thus, in case of EXPORT
ciphers, also unnecessarily weakening the MAC (not required by export restrictions)

 Ciphers marked as “Export” have an arbitrary small key size and can be cracked easily with
today’s hardware.

 weak MAC construction and supports only MD5 hash function

 padding length field is unauthenticated 1

 Downgrade attack – an attacker may downgrade the encryption to the lowest available
and after doing so crack the keys.

 Truncation attacks – The attacker may reset the TCP connection and as such

1
 Analysis of the SSL 3.0 Protocol - David Wagner et al

Protocol Key exchange Authentication Encryption MAC

Strong SSL Configuration & Compatibility Report 2009

5

Differences between SSLv3 and SSLv2

 Key material is no longer reused in both Message authentication and encryption making
suites marked as EXPORT „stronger“.

 MAC contruction enhanced and support for SHA1 added

 SSLv3 adds protection of the Handshake, server-side can detect downgrade attacks

 SSLv3 adds support for a closure alert

Differences between TLS v1and SSLv3

 Expansion of cryptographic keys from the initially exchanged secret was improved

 MAC construction mechanism modified into an HMAC

 Mandatory support for Diffie-Hellman key exchange, the Digital Signature Standard, and
Triple-DES encryption

Differences between TLS v1.1 and TLS v1 2

 The implicit Initialization Vector (IV) is replaced with an explicit IV to protect against CBC
attacks3

 Handling of padding errors is changed to use the bad_record_mac

 Alert rather than the decryption_failed alert to protect against CBC attacks

 IANA registries are defined for protocol parameters.

 Premature closes no longer cause a session to be nonresumable.

 Additional informational notes were added for various new attacks on TLS

Differences between TLSv1.2 and TLSv1.1 4

 SHA-256 is the default digest method

 Several new cipher suites use SHA-256

 It has better ways to negotiate what signature algorithms the client supports

 Alerts are mandatory now be sent in many cases

 After a certificate_request, if no certificates are available, clients now MUST send an
empty certificate list

 TLS_RSA_WITH_AES_128_CBC_SHA is now the mandatory to implement cipher suite

 Added HMAC-SHA256 cipher suites

 Removed IDEA and DES cipher suites, they are now deprecated.

 Support for the SSLv2 backward-compatible is now optional only.

2
 http://www.ietf.org/rfc/rfc4346.txt

3
 http://www.openssl.org/~bodo/tls-cbc.txt

4
 http://www.ietf.org/rfc/rfc5246.txt

Strong SSL Configuration & Compatibility Report 2009

6

Protocol Key exchange Authentication Encryption MAC

Protocol Key exchange

The key exchange is used to generate a

pre_master_secret known to the client and the server but not to somebody in the middle of the

connection (Attacker). The pre_master_secret is then used to generate the master_secret

which is used to generate the certificate verify and finished messages, encryption keys, and

MAC secrets.

RSA

With RSA, key exchange and server authentication are combined. The public key may be

either contained in the server's certificate or may be a temporary RSA key sent in a server

key exchange message, old signatures and temporary keys cannot be replayed.

DH

DH stands for Diffie Hellman, when using DH the server supplies a certificate containing a

fixed Diffie-Hellman parameter. Temporary parameters are hashed and signed to ensure that

attackers cannot replay parameters. The client then verifies the certificate and signature to

ensure that the parameters belong to the actual server. When using DH the client and server

will generate the same pre_master_secret every time.

DHE

DHE stands for Ephemeral Diffie Hellmann, the server supplies a certificate containing

temporary Diffie-Hellman parameter signed with the servers RSA or DSS certificate. This

has the effect that it offers perfect forward secrecy. This means that even if you have

compromised/broken/stolen the server private key that you cannot decrypt past captured

traffic.

For this case DHE is the recommended key exchange protocol by G-SEC, if for monitoring

reasons decryption needs to be done we recommend to write the Diffie Hellmann

parameters to a database for every new session. That way you can decrypt past traffic if you

have access to the server side database.

ADH

ADH stands for Anonymous Diffie Hellmann and allows completely anonymous connections,

the server and client public parameters are contained in the corresponding exchange

messages. Passive man-in-the-middle attacker should not be able to find the Diffie-Hellman

result (i.e. the pre_master_secret), however this method of key exchange is vulnerable to

active man-in-the-middle attacks.

ECDHE

ECDHE (or EECDH in Openssl 1.0) is DHE combined with elliptic key cryptography.

Strong SSL Configuration & Compatibility Report 2009

7

Protocol Key exchange Authentication Encryption MAC

Authentication

TLS supports three authentication

modes: authentication of server and client (through server and client certificate), server only

authentication and anonymous connections. The algorithms available are:

No authentication

No authentication

RSA

 The algorithm used to sign the certificate is RSA5 6

DSS

The digital signature standard is used to sign the certificate

ECDSA

ECDSA stands for Elliptic Curve Digital Signature Algorithm; it is a variant of the Digital

Signature algorithm that uses Elliptic Curve cryptography.

KRB57

Kerberos credentials are used to achieve mutual authentication and to establish a master
secret which is subsequently used to secure client-server communication.

PSK

Authentication takes place pre-shared keys, these symmetric keys are known to both parties
prior to authenticating.

5
 http://en.wikipedia.org/wiki/RSA

6
 http://www.di-mgt.com.au/rsa_alg.html

7
 http://www.ietf.org/rfc/rfc2712.txt

Strong SSL Configuration & Compatibility Report 2009

8

Protocol Key exchange Authentication Encryption MAC

Encryption

Encryption serves the purpose to

transform plaintext into unreadable

data through usage of an algorithm.

NULL

No encryption will take place, this is for example useful when you want to ensure the

authenticity of the data

AES8

The Advanced Encryption Standard, previously known as Rjindael, was the winner of the NIST

competition as it regarded as state of the art encryption. AES offers key sizes from 128, 192

to 256 bits of size

CAMELLIA9

Developed by Mitsubishi and NTT is available under a royalty free license and according to

sources has been “has been evaluated favorably by several organisations, including the

European Union's NESSIE project (a selected algorithm), and the Japanese CRYPTREC project

(a recommended algorithm)”

RC4 / RC2

RC4 is a Stream cipher invented by Ron Rivest and was closed source until the release of the

source code in 1994 to cypherpunks mailing list. There were several attacks that have been

uncovered against RC4, particularly as used within WEP. RC2 is a block cipher invented by

Ron Rivest in 1996 the source code was leaked to the sci.crypt usenet group. RC2 is

vulnerable to several attacks.

IDEA10

The International Data Encryption Algorithm is a block cipher invented by James Massey , It is

still considered secure however it is patented and slower than modern ciphers. The patent

will expire in 2011.

3DES

Triple-DES was created when DES was found to be vulnerable due to a key size being too

small, it uses the e Data Encryption Standard cipher algorithm three times over each block.

DES

The history of DES is interesting as it was believed that the NSA tampered with the s-boxes,

Wikipedia has a good summary. DES is weak and should no longer be used.

8
 http://en.wikipedia.org/wiki/Advanced_Encryption_Standard

9
 http://en.wikipedia.org/wiki/Camellia_%28cipher%29

10
 http://en.wikipedia.org/wiki/International_Data_Encryption_Algorithm

http://en.wikipedia.org/wiki/Data_Encryption_Standard

Strong SSL Configuration & Compatibility Report 2009

9

Minimum industry Encryption and Key length recommendations

This summary does not take into account the arrival of quantum computing, large quantum

computers able to crack large keys are foreseen for 2014 by the ARDA and 2018 by Prof Lloyd11 .

Shors’ algorithm could then be used to break the RSA key sizes presented here below.

Recommended Asymmetric key length12

Year Window BSI13 NIST14 Lenstra15 FNISA16

Until 2009 Minimum
Recommended

1536
2048

1024 1114 1536

Until 2010 Minimum

Recommended

1728

2048

1024 1152 1536

Until 2012 Minimum

Recommended

1976

2048

2048 1229 2048

Until 2020 Minimum 2048 2048 1568 4096

Recommended Symmetric key length

Year Window BSI NIST Lenstra FNISA

Until 2009 Minimum - 80 74 80

Until 2010 Minimum - 80 75 80

Until 2012 Minimum - 112 76 100

Until 2020 Minimum - 112 82 100

Recommended Hashing algorithm and size

Year Window BSI NIST Lenstra

Until 2009 - 80 148 160 minimum

Until 2010 - 224 150 160 minimum

Until 2012 SHA-224, SHA-256

SHA-384, SHA-512

224 152 256 minimum

(SHA)

Until 2020 - 224 163 256 minimum (SHA)

11

 http://synaptic-labs.com/ecosystem/context-qc-relevant-today.html
12

 http://www.rsa.com/rsalabs/node.asp?id=2264
13

 https://www.bsi.bund.de/cae/servlet/contentblob/476754/publicationFile/31104/BSI_Final_07_pdf.pdf
14

 http://csrc.nist.gov/groups/ST/toolkit/key_management.html
15

 http://people.epfl.ch/arjen.lenstra
16

 http://www.ssi.gouv.fr/site_article76.html

Strong SSL Configuration & Compatibility Report 2009

10

G-SEC recommendations and best practices
This section gives advice on how to securely configure your SSL/TLS service and in particularly

which Encryption, Authentication, Key exchange settings to use. In order to do so we collected

SSL support information from all modern Browsers and servers with additional help from Ivan

Ristic17 (SSL Labs).

17

 http://blog.ivanristic.com/2009/07/examples-of-the-information-collected-from-ssl-handshakes.html

http://blog.ivanristic.com/2009/07/examples-of-the-information-collected-from-ssl-handshakes.html

Strong SSL Configuration & Compatibility Report 2009

11

TLS / SSL Browser Compatibility overview
In order to assess the SSL/TLS support of modern Internet browsers we had to take a look at the

SSL engines they use. Netscape uses the NSS engine, IE5,6,7,8 and Safari use Schannel, Opera

and Safari for Mac uses custom SSL engines. As this collection and analysis took quite some

time, we would appreciate a heads-up if you use this information.

Browser protocol support (Default)

There is no reason to continue supporting SSLv2 - Offering SSLv2 opens you to liability should a

transaction be compromised.

Protocol Firefox 3 1 XP/W2k/2003 2 Vista & 7 2 Opera 10 Safari 4 3

SSLv2 No No No No No

SSLv3 Yes Yes Yes Yes Yes

TLS 1.0 Yes Yes Yes Yes Yes

TLS 1.1 No No Yes Yes No

TLS 1.2 No No Yes Yes No

Browser Key exchange algorithms support

We recommend using ephemeral Diffie Hellmann paired with either RSA or DSS as signature

Algorithm Firefox 3 1 XP/W2k/2003 2 Vista & 7 2 Opera 10 Safari 4 3

RSA Yes Yes Yes Yes Yes

DHE-RSA Yes No Yes Yes Yes

DHE-DSS Yes Yes Yes Yes Yes

ECC Yes No Yes No No

1 Windows, Linux, MACOSX | 2 Internet Explorer 7 & Internet Explorer 8 & Safari 4 (use schannel.dll –

provided by Windows) | 3 MacOSX

Strong SSL Configuration & Compatibility Report 2009

12

RSA

RSA public-key cryptosystem is an asymmetric encryption method and (public-key cryptography)

it can be used for signatures as well as encryption. In SSL/TLS RSA is used during key exchange

(handshake). RSA bases its security on the length of the modulus that must be factored. The

bigger the modulus the harder it is to break the algorithm.

Browser supported RSA key size, DH and SRP 18

These are the key sizes that are supported by major Browsers, there is no client side

restriction to use 1024 bit instead of 2048, and additionally 1024 bit are considered weak by

today’s standards.

RSA Modulus Firefox 3 1 XP/W2k/2003 2 Vista & 7 2 Opera 10 Safari 4 3

1024 Yes Yes Yes Yes Yes

2048 Yes Yes Yes Yes Yes

4096 Yes Yes Yes Yes unkn

Browser supported Ciphers 19

In order for this list to stay focused on best practices we display modern or strong ciphers

only.

Cipher Size Firefox 3 1 XP/W2k/2003 2 Vista & 7 2 Opera 10 Safari 4 3

AES 128 Yes No 4 Yes Yes Yes

AES 256 Yes No 4 Yes Yes Yes

RC4 128 Yes Yes Yes Yes Yes

Camellia 128 Yes No No No No

Camellia 256 Yes No No No No

3DES 168 Yes Yes Yes Yes Yes

1 Windows, Linux, MACOSX | 2 Internet Explorer 7 & Internet Explorer 8 & Safari 4 (use schannel.dll –

provided by Windows) | 3 MacOSX | 4 Support for AES can be added through a Hotfix

18

 http://msdn.microsoft.com/en-us/library/bb931357%28VS.85%29.aspx
19

 With heavy support from SSLLAB (Ivan Ristic)

Strong SSL Configuration & Compatibility Report 2009

13

ECC

Elliptic curve cryptography bases on a discrete logarithm problem, ECC needs less key size to

achieve the same strength then RSA, as an example, an ECC 160-bit field offers the same

resistance as an 1024-bit RSA modulus. This allows for smaller keys and offer improved

performance. Unfortunately ECC is not widely supported in Browser as of yet, but certainly will

be in the future.

ECDH support

ECDH Firefox 3 1 XP/W2k/2003 2 Vista & 7 2 Opera 10 Safari 4 3

P-256 Yes No Yes No No

P-512 Yes No Yes No No

ECDSA support

ECDSA Firefox 3 1 XP/W2k/2003 2 Vista & 7 2 Opera 10 Safari 4 3

P-256 Yes No Yes No No

P-512 Yes No Yes No No

1 Windows, Linux, MACOSX | 2 Internet Explorer 7 & Internet Explorer 8 & Safari 4 (use

 schannel.dll – provided by Windows) | 3 MacOSX

Strong SSL Configuration & Compatibility Report 2009

14

TLS / SSL Server Compatibility overview

Server protocol support

This matrix shows the protocol support of modern web servers - There is no reason to continue

supporting SSLv2 - Offering SSLv2 opens you to liability should a transaction be compromised.

Protocol IIS6 1 IIS7 2 IIS7.5 3 Openssl GnuTls JSSE 1.4.2 4 NSS 5

SSLv2 Yes Yes Yes Yes No Yes Yes

SSLv3 Yes Yes Yes Yes Yes Yes

TLS 1.0 Yes Yes Yes Yes Yes Yes Yes

TLS 1.1 No Yes Yes No Yes No No

TLS 1.2 No No Yes No Yes No No

Server key exchange algorithms support

We recommend offering ephemeral Diffie Hellmann paired with either RSA or DSS as signature

Algorithm IIS6 1 IIS7 2 IIS7.5 3 Openssl GnuTls JSSE 1.4.2 4 NSS20

RSA Yes Yes Yes Yes Yes Yes Yes

DHE-RSA No Yes Yes Yes Yes Yes Yes

DHE-DSS Yes Yes Yes Yes Yes Yes Yes

ECC No Yes Yes Yes21 Yes No Yes

1 Windows 2003 | 2 Windows 2008 | 3 Windows 2008 R2 | 4 Tomcat | 5 Network Security

Services22 (Apache,Redhat,Sun Java Enterprise..)

20

 http://www.mozilla.org/projects/security/pki/nss/nss-3.11/nss-3.11-algorithms.html
21

 https://issues.apache.org/bugzilla/show_bug.cgi?id=40132
22

 https://developer.mozilla.org/en/Overview_of_NSS#Interoperability_and_Open_Standards

Strong SSL Configuration & Compatibility Report 2009

15

RSA

RSA public-key cryptosystem is an asymmetric encryption method (public-key cryptography), it

can be used for signing as well as encryption. In SSL/TLS RSA is used during key exchange

(handshake). RSA bases its security on the length of the modulus that must be factored. The

bigger the modulus the harder it is to break the algorithm.

Server RSA key size, DH and SRP prime support23

This list the key sizes that are supported by Major Web servers, there is no server side

restriction to use 1024 bit instead of 2048.

RSA Modulus IIS6 1 IIS7 2 IIS7.5 3 Openssl GnuTls JSSE 1.4.24 NSS 24

1024 Yes Yes Yes Yes Yes Yes Yes

2048 Yes Yes Yes Yes Yes Yes Yes

4096 Yes Yes Yes Yes Yes No Yes

Server Cipher support25

In order for this list to stay focused on best practices we display modern or strong ciphers

only.

Cipher Size IIS6 1 IIS7 2 IIS7.5 3 Openssl GnuTls26 JSSE 1.4.24 NSS 27

AES 128 No Yes Yes Yes Yes Yes Yes

AES 256 No Yes Yes Yes Yes Yes Yes

RC4 128 Yes Yes Yes Yes Yes Yes Yes

Camellia 128 No No No Yes Yes No Yes

Camellia 256 No No No Yes Yes No Yes

3DES 156 Yes Yes Yes Yes Yes Yes Yes

1 Windows 2003 | 2 Windows 2008 | 3 Windows 2008 R2 | 4 Tomcat | 5 Network Security

Services28 (Apache,Redhat,Sun Java Enterprise..)

23

 http://msdn.microsoft.com/en-us/library/bb931357%28VS.85%29.aspx
24

 http://www.ibm.com/developerworks/websphere/techjournal/0612_birk/0612_birk.html
25

 With heavy support from SSLLAB (Ivan Ristic)
26

 http://www.gnu.org/software/gnutls/comparison.html
27

 http://www.ibm.com/developerworks/websphere/techjournal/0612_birk/0612_birk.html
28

 https://developer.mozilla.org/en/Overview_of_NSS#Interoperability_and_Open_Standards

Strong SSL Configuration & Compatibility Report 2009

16

Recommend SSL configuration
Taking into account the previous client and server compatibility matrixes it is apparent that the

best setup to use has changed over the years. Protocols have been enhanced and weaknesses

patched and encryption strengthened.

Apache & IIS7/ IIS7.5 recommended SSL configuration

These are the cipher suites that offer most security and compatibility and should be offered by

Apache for e-banking applications. No SSLv2 and SSlv3 support should be provided at all.

Cipher suite name Protocol KeyX Auth Enc bit Hash Comp.
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA TLS 1.0 ECDHE ECDSA AES 256 SHA 
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA TLS 1.0 ECDHE ECDSA AES 128 SHA 
TLS_DHE_RSA_WITH_AES_256_CBC_SHA TLS 1.0 DHE RSA AES 256 SHA 
TLS_DHE_RSA_WITH_AES_128_CBC_SHA TLS 1.0 DHE RSA AES 128 SHA 
TLS_RSA_WITH_RC4_128_SHA TLS 1.0 RSA RSA RC4 128 SHA 
TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA TLS 1.0 DHE DSS 3DES 168 SHA 

 Firefox3  Opera
 Windows XP/2000/2003 (IE7, Safari)  Windows 7/Vista/2008 (IE8, Safari)
 Safari (MacOSx)

IIS6 recommended SSL configuration29 30

These are the cipher suites that offer most security and compatibility and should be offered by

Apache for e-banking applications. No SSLv2 and SSlv3 support should be provided at all.

Cipher suite name Protocol KeyX Auth Enc bit Hash Comp.
TLS_DHE_RSA_WITH_AES_256_CBC_SHA* TLS 1.0 DHE RSA AES 256 SHA 
TLS_DHE_RSA_WITH_AES_128_CBC_SHA* TLS 1.0 DHE RSA AES 128 SHA 
TLS_RSA_WITH_RC4_128_SHA TLS 1.0 RSA RSA RC4 128 SHA 
TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA TLS 1.0 DHE DSS 3DES 168 SHA 

* IIS6 will support AES only after the installation of a Hotfix (which is recommended)
 Firefox3  Opera
 Windows XP/2000/2003 (IE7, Safari)  Windows 7/Vista/2008 (IE8, Safari)
 Safari (MacOSx)

29

 http://support.microsoft.com/?scid=kb;en-us;245030&x=14&y=11
30

 http://www.gorlani.com/publicprj/CipherControl/

Strong SSL Configuration & Compatibility Report 2009

17

Summary

Minimum SSL configuration for E-banking

 Use a private key that is at least 2048 bits long

(See section “Minimal symmetric Key length”)

 Do not offer ciphers below 128 bit

(See section “Minimal asymmetric Key length”)

 Do not support SSLv2

(see section “SSLv2 Technical details”)

 Do not offer Anonymous Diffie Hellman support (ADH)

 Do not reuse keys across certificates and generate new keys for every certificate you

request

 Do offer TLS 1.0 and/or better support

Recommended SSL configuration for E-banking

 Support Elliptic key cryptography as preferred cipher

 Offer AES as encryption algorithm

 Use a minimum encryption key length 128-bit

 Use key exchanged that that offer perfect forward secrecy (DHE)

 The RSA key size needs to be at least 2048 bits strong

 Drop support for SSLv2 and SSLv3 (See Browser compatibility chart)

 Restrict protocol support TLS 1.0 or better support

(See Browser compatibility chart)

 Use Client certificates as an additional layer to authenticate clients

Strong SSL Configuration & Compatibility Report 2009

18

Sources
1. http://www.ssllabs.com

2. https://www.mikestoolbox.net/

3. http://extendedsubset.com/

Thanks
We would like to thank Ivan Ristic (SSL Labs) for the support.

Disclaimer
The Information is believed to be accurate by the time of writing.

Copyright
This document is copyrighted by “Thierry Zoller” and G-SEC .ltd

http://www.ssllabs.com/
https://www.mikestoolbox.net/
http://extendedsubset.com/

Strong SSL Configuration & Compatibility Report 2009

19

Appendix

Enumerate Crypto api

///

// EnumProviders.cpp

// Enumerate the cryptographic providers installed on the

// computer. This sample enumerates the Cryptography API

// (CryptoAPI) and Cryptography API: Next Generation (CNG)

// providers.

// Specify that the minimum target operating system is Vista.

#ifndef NTDDI_VERSION

#define NTDDI_VERSION NTDDI_VISTA

#endif

#include <certenroll.h>

#include <windows.h>

#include <stdio.h>

#include <conio.h>

#include <tchar.h>

#include <atlbase.h>

// Forward declaration.

HRESULT enumProviders(void);

int _tmain(int argc, _TCHAR* argv[])

{

 HRESULT hr = S_OK;

 // Initialize COM.

 hr = CoInitializeEx(NULL, COINIT_APARTMENTTHREADED);

 if(FAILED(hr)) return hr;

 // Enumerate the CryptoAPI and CNG providers.

 hr = enumProviders();

 CoUninitialize();

 return hr;

}

HRESULT enumProviders(void)

{

 CComPtr<ICspInformations> pCSPs; // Provider collection

 CComPtr<ICspInformation> pCSP; // Provider instgance

 HRESULT hr = S_OK; // Return value

 long lCount = 0; // Count of providers

 CComBSTR bstrName; // Provider name

 VARIANT_BOOL bLegacy; // CryptoAPI or CNG

 // Create a collection of cryptographic providers.

 hr = CoCreateInstance(

 __uuidof(CCspInformations),

 NULL,

 CLSCTX_INPROC_SERVER,

 __uuidof(ICspInformations),

 (void **) &pCSPs);

 if(FAILED(hr)) return hr;

 // Add the providers installed on the computer.

 hr = pCSPs->AddAvailableCsps();

 if(FAILED(hr)) return hr;

Strong SSL Configuration & Compatibility Report 2009

20

 // Retrieve the number of installed providers.

 hr = pCSPs->get_Count(&lCount);

 if(FAILED(hr)) return hr;

 // Print the providers to the console. Print the

 // name and a value that specifies whether the

 // CSP is a legacy or CNG provider.

 for (long i=0; i<lCount; i++)

 {

 hr = pCSPs->get_ItemByIndex(i, &pCSP);

 if(FAILED(hr)) return hr;

 hr = pCSP->get_Name(&bstrName);

 if(FAILED(hr)) return hr;

 hr = pCSP->get_LegacyCsp(&bLegacy);

 if(FAILED(hr)) return hr;

 if(VARIANT_TRUE == bLegacy)

 wprintf_s(L"%2d. Legacy: ", i);

 else

 wprintf_s(L"%2d. CNG: ", i);

 wprintf_s(L"%s\n", static_cast<wchar_t*>(bstrName.m_str));

 pCSP=NULL;

 }

 printf_s("\n\nHit any key to continue: ");

 _getch();

 return hr;

}

